GIXStapose: An interactive structure-viewer alongside its simulated diffraction pattern

High-quality, reproducible images help users see the connection between morphology and bright diffraction peaks

INTRO
- **GIXStapose** enables grazing incidence X-ray scattering (GIXS) patterns to be visualized while interactively rotating chemical structures, especially periodic simulation volumes generated from molecular simulations.

 - This functionality is useful for interactively identifying real-space chemical features that correspond to bright diffraction peaks and the rotation matrices that generate them.

 - We hope this tool simplifies the process of understanding and creating publication-quality scattering patterns.

PROJECT GOALS
1. Create a tool for image creation that aids in reproducibility
2. Collaborate with open-source software community to build on already existing frameworks

FUTURE WORK
- Use machine learning to automate the detection of bright peaks
- Integrate the diffractometer package as a module in the Freud analysis suite

How is GIXS calculated?
Scattering patterns are calculated in a sequence of matrix transformations: rotations, shears, and Fourier transforms that are implemented in Numpy.

An in-depth explanation of the diffractometer package is given here.

How are the pictures made?
The real-space morphology images are created with Fresnel, a ray tracer with a convenient Python API that uses C or CUDA under the hood.

The scattering patterns are displayed using Matplotlib.

How can I use this tool?
GIXStapose can be used through a GUI, but all the functionality is useful for interactively identifying real-space chemical features that correspond to bright diffraction peaks and the rotation matrices that generate them.

Check out our example notebook to see a walkthrough of creating figures and diffraction patterns from a perfect crystal and messy simulation data.

Acknowledgements
This project would not be possible without the open-source software packages, Fresnel, MBuild, Matplotlib, and Numpy, and funding from the National Science Foundation (#1835593).

Authors Jenny Fothergill, Chris Jones, Eric Jankowski